Av(1234, 1243, 1342, 3142, 3241)
Generating Function
\(\displaystyle \frac{2 x^{7}-5 x^{6}+8 x^{5}-10 x^{4}+15 x^{3}-14 x^{2}+6 x -1}{\left(2 x -1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 149, 385, 961, 2340, 5596, 13203, 30828, 71391, 164230, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)-2 x^{7}+5 x^{6}-8 x^{5}+10 x^{4}-15 x^{3}+14 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 149\)
\(\displaystyle a \! \left(7\right) = 385\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right)-\frac{\left(n +1\right) \left(n -4\right)}{2}, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 149\)
\(\displaystyle a \! \left(7\right) = 385\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+a \! \left(n +1\right)-4 a \! \left(n +2\right)+4 a \! \left(n +3\right)-\frac{\left(n +1\right) \left(n -4\right)}{2}, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{5}{8}-\frac{n^{2}}{4}+\frac{n}{2}-\frac{6909 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{236}+\frac{351 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{472}-\frac{27535 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{472}+\frac{14463 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{4}-Z^{3}+4 Z^{2}-4 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{472}+\left(\left\{\begin{array}{cc}1 & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 52 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 52 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 0\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{26}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{27}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{31}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{35}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= 2 F_{19}\! \left(x \right)+F_{31}\! \left(x \right)+F_{40}\! \left(x \right)\\
\end{align*}\)