Av(1234, 1243, 1342, 3124, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(-x^{3}+4 x^{2}-3 x +1\right) \sqrt{1-4 x}+3 x^{3}-4 x^{2}+3 x -1}{2 x \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 183, 578, 1873, 6224, 21132, 73013, 255843, 906834, 3244988, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{6} F \left(x \right)^{2}-\left(3 x^{3}-4 x^{2}+3 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{6}-6 x^{5}+18 x^{4}-23 x^{3}+16 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 59\)
\(\displaystyle a \! \left(6\right) = 183\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{n +6}-\frac{3 \left(12+7 n \right) a \! \left(n +1\right)}{n +6}+\frac{3 \left(26+11 n \right) a \! \left(n +2\right)}{n +6}-\frac{\left(82+23 n \right) a \! \left(n +3\right)}{n +6}+\frac{2 \left(19+4 n \right) a \! \left(n +4\right)}{n +6}+\frac{2 n +2}{n +6}, \quad n \geq 7\)

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 99 rules.

Found on July 23, 2021.

Finding the specification took 5 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 99 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{21}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{21}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x , y\right)+F_{90}\! \left(x , y\right)+F_{92}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{89}\! \left(x \right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{43}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= y x\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{31}\! \left(x , y\right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= x\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{21}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= 0\\ F_{28}\! \left(x \right) &= F_{21}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{21}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{31}\! \left(x , y\right) &= F_{27}\! \left(x \right)+F_{32}\! \left(x , y\right)+F_{40}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{33}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= F_{34}\! \left(x , y\right)+F_{35}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{27}\! \left(x \right)+F_{37}\! \left(x , y\right)+F_{39}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)+F_{36}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{23}\! \left(x \right)\\ F_{40}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{41}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= F_{23}\! \left(x \right)+F_{42}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{60}\! \left(x , y\right)\\ F_{44}\! \left(x , y\right) &= F_{45}\! \left(x \right)+F_{54}\! \left(x , y\right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{21}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{21}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{54}\! \left(x , y\right) &= F_{27}\! \left(x \right)+F_{55}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\ F_{58}\! \left(x , y\right) &= F_{54}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{44}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= F_{61}\! \left(x \right)+F_{76}\! \left(x , y\right)\\ F_{61}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{21}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{21}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{71}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{21}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{21}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{76}\! \left(x , y\right) &= F_{27}\! \left(x \right)+F_{77}\! \left(x , y\right)+F_{81}\! \left(x , y\right)+F_{82}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{78}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= F_{79}\! \left(x , y\right)+F_{80}\! \left(x , y\right)\\ F_{79}\! \left(x , y\right) &= F_{31}\! \left(x , y\right)\\ F_{80}\! \left(x , y\right) &= F_{76}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= 0\\ F_{82}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{83}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{70}\! \left(x \right)+F_{84}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= 2 F_{27}\! \left(x \right)+F_{82}\! \left(x , y\right)+F_{85}\! \left(x , y\right)\\ F_{85}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{86}\! \left(x , y\right)\\ F_{86}\! \left(x , y\right) &= F_{87}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\ F_{87}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)\\ F_{88}\! \left(x , y\right) &= F_{84}\! \left(x , y\right)\\ F_{89}\! \left(x \right) &= F_{25} \left(x \right)^{2} F_{21}\! \left(x \right)\\ F_{90}\! \left(x , y\right) &= F_{21}\! \left(x \right) F_{91}\! \left(x , y\right)\\ F_{91}\! \left(x , y\right) &= \frac{y F_{6}\! \left(x , y\right)-F_{6}\! \left(x , 1\right)}{-1+y}\\ F_{92}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{21}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{61}\! \left(x \right)\\ \end{align*}\)