Av(1234, 1243, 1342, 3124, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{4}-x^{3}-2 x +1}{2 x^{3}-x^{2}+3 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 158, 457, 1323, 3828, 11075, 32043, 92710, 268237, 776087, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{3}-x^{2}+3 x -1\right) F \! \left(x \right)+x^{4}-x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(\left(\left(-14348 \,\mathrm{I}+51 \sqrt{211}\right) \sqrt{3}+153 \,\mathrm{I} \sqrt{211}-14348\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}+121958+\left(\left(1055 \,\mathrm{I}+144 \sqrt{211}\right) \sqrt{3}-432 \,\mathrm{I} \sqrt{211}-1055\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(28 \,\mathrm{I}+3 \sqrt{211}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{211}-28\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}}}{3468}-\frac{\mathrm{I} \sqrt{3}\, \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{1}{6}\right)^{-n}}{487832}\\+\\\frac{\left(\left(\left(14348 \,\mathrm{I}+51 \sqrt{211}\right) \sqrt{3}-153 \,\mathrm{I} \sqrt{211}-14348\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}+121958+\left(\left(-1055 \,\mathrm{I}+144 \sqrt{211}\right) \sqrt{3}+432 \,\mathrm{I} \sqrt{211}-1055\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(-28 \,\mathrm{I}+3 \sqrt{211}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{211}-28\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}}}{3468}+\frac{\mathrm{I} \sqrt{3}\, \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{1}{6}\right)^{-n}}{487832}\\-\\\frac{3 \left(\frac{\left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{6}+\frac{14 \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}}}{867}-\frac{\left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{211}\, \sqrt{3}}{578}\right)^{-n} \left(\left(\frac{48 \sqrt{211}\, \sqrt{3}}{17}-\frac{1055}{51}\right) \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{211}\, \sqrt{3}-\frac{844 \left(28+3 \sqrt{211}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{3587}{3}\right)}{14348} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 58 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 58 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{17}\! \left(x \right) &= 0\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{32}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{31}\! \left(x \right)\\ \end{align*}\)