Av(1234, 1243, 1342, 2413, 4123)
Generating Function
\(\displaystyle \frac{x^{7}-5 x^{6}+12 x^{5}-29 x^{4}+38 x^{3}-25 x^{2}+8 x -1}{\left(x^{2}-3 x +1\right)^{2} \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 165, 470, 1329, 3741, 10490, 29306, 81582, 226351, 626084, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right)^{2} \left(x -1\right)^{3} F \! \left(x \right)-x^{7}+5 x^{6}-12 x^{5}+29 x^{4}-38 x^{3}+25 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 165\)
\(\displaystyle a \! \left(7\right) = 470\)
\(\displaystyle a \! \left(n +4\right) = \frac{n^{2}}{2}-11 a \! \left(n +2\right)+6 a \! \left(n +3\right)-a \! \left(n \right)+6 a \! \left(n +1\right)-\frac{3 n}{2}-1, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 165\)
\(\displaystyle a \! \left(7\right) = 470\)
\(\displaystyle a \! \left(n +4\right) = \frac{n^{2}}{2}-11 a \! \left(n +2\right)+6 a \! \left(n +3\right)-a \! \left(n \right)+6 a \! \left(n +1\right)-\frac{3 n}{2}-1, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(\left(10 n +72\right) \sqrt{5}-20 n -150\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{50}+\\\frac{\left(\left(-10 n -72\right) \sqrt{5}-20 n -150\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{50}+\frac{n^{2}}{2}-\frac{7 n}{2}+6 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 81 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 81 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{16}\! \left(x \right) &= 0\\
F_{17}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{22}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{10}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{10}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{35}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{10}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{10}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{39}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{10}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{55}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{10}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{10}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{10}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{66}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{10}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{39}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{10}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{10}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{78}\! \left(x \right) &= 2 F_{16}\! \left(x \right)+F_{55}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{10}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{78}\! \left(x \right)\\
\end{align*}\)