Av(1234, 1243, 1342, 1432, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{3 x^{8}+6 x^{7}+5 x^{6}-6 x^{5}-7 x^{4}-x^{3}+2 x -1}{\left(x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x^{4}+2 x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 124, 291, 669, 1500, 3316, 7256, 15732, 33862, 72465, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x^{4}+2 x^{3}+x^{2}+x -1\right) F \! \left(x \right)-3 x^{8}-6 x^{7}-5 x^{6}+6 x^{5}+7 x^{4}+x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 124\)
\(\displaystyle a \! \left(7\right) = 291\)
\(\displaystyle a \! \left(8\right) = 669\)
\(\displaystyle a \! \left(n +7\right) = -a \! \left(n \right)-3 a \! \left(n +1\right)-4 a \! \left(n +2\right)-3 a \! \left(n +3\right)+a \! \left(n +4\right)+a \! \left(n +5\right)+2 a \! \left(n +6\right)-1, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \frac{3127445 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +6}\right)}{264352}+\frac{7796017 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +5}\right)}{264352}+\frac{1757263 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{66088}+\frac{571391 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{264352}-\frac{12090591 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{264352}-\frac{6062321 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{264352}-\frac{803719 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{33044}+\frac{6025715 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{8}+2 Z^{7}+Z^{6}-Z^{5}-4 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{264352}+\left(\left\{\begin{array}{cc}3 & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 97 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 97 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{38}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{37}\! \left(x \right) &= 0\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= 2 F_{37}\! \left(x \right)+F_{50}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= 2 F_{37}\! \left(x \right)+F_{50}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{37}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{80}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= 2 F_{37}\! \left(x \right)+F_{85}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{88}\! \left(x \right) &= 2 F_{37}\! \left(x \right)+F_{64}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ \end{align*}\)