Av(1234, 1243, 1324, 2314, 3241)
Generating Function
\(\displaystyle -\frac{x^{9}+x^{8}-x^{7}+3 x^{6}-9 x^{4}+3 x^{3}+7 x^{2}-5 x +1}{\left(x^{2}+2 x -1\right) \left(x -1\right)^{2} \left(x^{2}+x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 167, 458, 1213, 3132, 7940, 19862, 49204, 121030, 296166, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+2 x -1\right) \left(x -1\right)^{2} \left(x^{2}+x -1\right)^{2} F \! \left(x \right)+x^{9}+x^{8}-x^{7}+3 x^{6}-9 x^{4}+3 x^{3}+7 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(7\right) = 458\)
\(\displaystyle a \! \left(8\right) = 1213\)
\(\displaystyle a \! \left(9\right) = 3132\)
\(\displaystyle a \! \left(n +6\right) = a \! \left(n \right)+4 a \! \left(n +1\right)+2 a \! \left(n +2\right)-6 a \! \left(n +3\right)-2 a \! \left(n +4\right)+4 a \! \left(n +5\right)+n -3, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 167\)
\(\displaystyle a \! \left(7\right) = 458\)
\(\displaystyle a \! \left(8\right) = 1213\)
\(\displaystyle a \! \left(9\right) = 3132\)
\(\displaystyle a \! \left(n +6\right) = a \! \left(n \right)+4 a \! \left(n +1\right)+2 a \! \left(n +2\right)-6 a \! \left(n +3\right)-2 a \! \left(n +4\right)+4 a \! \left(n +5\right)+n -3, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(\left(40 n +24\right) \sqrt{5}-80 n \right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{200}+\\\frac{\left(\left(-40 n -24\right) \sqrt{5}-80 n \right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{200}+\\\frac{\left(-225 \sqrt{2}-50\right) \left(-1-\sqrt{2}\right)^{-n}}{200}+\frac{\left(225 \sqrt{2}-50\right) \left(\sqrt{2}-1\right)^{-n}}{200}-\frac{n}{2}+\frac{1}{2} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 61 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 61 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{16}\! \left(x \right) &= 0\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)