Av(1234, 1243, 1324, 1432)
Generating Function
\(\displaystyle -\frac{x^{5}+7 x^{4}-15 x^{3}+13 x^{2}-6 x +1}{4 x^{5}-18 x^{4}+25 x^{3}-18 x^{2}+7 x -1}\)
Counting Sequence
1, 1, 2, 6, 20, 69, 241, 845, 2966, 10415, 36580, 128494, 451385, 1585697, 5570519, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(4 x^{5}-18 x^{4}+25 x^{3}-18 x^{2}+7 x -1\right) F \! \left(x \right)+x^{5}+7 x^{4}-15 x^{3}+13 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 69\)
\(\displaystyle a \! \left(n +5\right) = 4 a \! \left(n \right)-18 a \! \left(n +1\right)+25 a \! \left(n +2\right)-18 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 69\)
\(\displaystyle a \! \left(n +5\right) = 4 a \! \left(n \right)-18 a \! \left(n +1\right)+25 a \! \left(n +2\right)-18 a \! \left(n +3\right)+7 a \! \left(n +4\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{4333 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n}}{48611}+\frac{4333 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n}}{48611}+\frac{4333 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n}}{48611}+\frac{4333 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n}}{48611}+\frac{4333 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n}}{48611}+\frac{950 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n -1}}{48611}+\frac{950 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n -1}}{48611}+\frac{950 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n -1}}{48611}+\frac{950 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n -1}}{48611}+\frac{950 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n -1}}{48611}-\frac{9509 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n +1}}{48611}-\frac{9509 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n +1}}{48611}-\frac{9509 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n +1}}{48611}-\frac{9509 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n +1}}{48611}-\frac{9509 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n +1}}{48611}+\frac{16089 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n +2}}{48611}+\frac{16089 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n +2}}{48611}+\frac{16089 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n +2}}{48611}+\frac{16089 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n +2}}{48611}+\frac{16089 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n +2}}{48611}-\frac{2442 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =1\right)^{-n +3}}{48611}-\frac{2442 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =2\right)^{-n +3}}{48611}-\frac{2442 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =3\right)^{-n +3}}{48611}-\frac{2442 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =4\right)^{-n +3}}{48611}-\frac{2442 \mathit{RootOf} \left(4 Z^{5}-18 Z^{4}+25 Z^{3}-18 Z^{2}+7 Z -1, \mathit{index} =5\right)^{-n +3}}{48611}-\left(\left\{\begin{array}{cc}\frac{1}{4} & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 176 rules.
Found on January 18, 2022.Finding the specification took 14 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 176 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{172}\! \left(x \right)+F_{18}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{40}\! \left(x \right)+F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{40}\! \left(x \right) &= 0\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{170}\! \left(x \right)+F_{18}\! \left(x \right)+F_{48}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{18}\! \left(x \right)+F_{56}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{60}\! \left(x \right) &= 0\\
F_{61}\! \left(x \right) &= 0\\
F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 3 F_{18}\! \left(x \right)+F_{66}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{168}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{79}\! \left(x \right)+F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)+F_{86}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{91}\! \left(x \right) &= 0\\
F_{92}\! \left(x \right) &= F_{4}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{105}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{100}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{101}\! \left(x \right)+F_{70}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{166}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{18}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{136}\! \left(x \right)+F_{164}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{117}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{18}\! \left(x \right)+F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{132}\! \left(x \right)+F_{134}\! \left(x \right)+F_{18}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{131}\! \left(x \right)+F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{126}\! \left(x \right)\\
F_{131}\! \left(x \right) &= 0\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{163}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{144}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{136}\! \left(x \right)+F_{146}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{150}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{33}\! \left(x \right)+F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{152}\! \left(x \right)+F_{18}\! \left(x \right)+F_{70}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{156}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{151}\! \left(x \right)+F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{162}\! \left(x \right)+F_{18}\! \left(x \right)+F_{60}\! \left(x \right)+F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{155}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{162}\! \left(x \right) &= 0\\
F_{163}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{138}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{169}\! \left(x \right) &= 0\\
F_{170}\! \left(x \right) &= F_{171}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{135}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{165}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{165}\! \left(x \right)+F_{167}\! \left(x \right)\\
\end{align*}\)