Av(1234, 1243, 1324, 1342, 1423, 2134, 2314, 2341, 3124, 3412, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{2 x^{8}-9 x^{7}+16 x^{6}-14 x^{5}+2 x^{4}+8 x^{3}-10 x^{2}+5 x -1}{\left(2 x -1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 13, 33, 80, 185, 411, 885, 1862, 3853, 7881, 15993, 32284, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x -1\right)^{4} F \! \left(x \right)+2 x^{8}-9 x^{7}+16 x^{6}-14 x^{5}+2 x^{4}+8 x^{3}-10 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 33\)
\(\displaystyle a \! \left(6\right) = 80\)
\(\displaystyle a \! \left(7\right) = 185\)
\(\displaystyle a \! \left(8\right) = 411\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(n -1\right) \left(n^{2}-2 n +6\right)}{6}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}2 & n =0 \\ -1+2^{n +1}-\frac{11 n}{6}-\frac{n^{3}}{6} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 36 rules.

Found on July 23, 2021.

Finding the specification took 4 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 36 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{26}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{13}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{13}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{13}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{10} \left(x \right)^{2}\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{10} \left(x \right)^{2} F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\ \end{align*}\)