Av(12345, 12435, 12453, 14235, 14253, 14523, 41235, 41253, 41523, 45123)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 530, 2597, 12796, 63156, 311826, 1539461, 7598492, 37496186, 184997956, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 28 rules.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 28 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{19}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x , y\right) &= -\frac{-F_{8}\! \left(x , y\right) y +F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{12}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{13}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= y x\\ F_{13}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{14}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , 1, y\right)\\ F_{15}\! \left(x , y , z\right) &= -\frac{-F_{16}\! \left(x , y , z\right) y +F_{16}\! \left(x , 1, z\right)}{-1+y}\\ F_{16}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y , z\right)+F_{18}\! \left(x , y , z\right)\\ F_{17}\! \left(x , y , z\right) &= F_{12}\! \left(x , z\right) F_{16}\! \left(x , y , z\right)\\ F_{18}\! \left(x , y , z\right) &= F_{12}\! \left(x , z\right) F_{15}\! \left(x , y , z\right)\\ F_{19}\! \left(x \right) &= x\\ F_{20}\! \left(x \right) &= F_{19}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x , 1\right)\\ F_{22}\! \left(x , y\right) &= -\frac{-F_{23}\! \left(x , y\right) y +F_{23}\! \left(x , 1\right)}{-1+y}\\ F_{23}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , 1, y\right)\\ F_{26}\! \left(x , y , z\right) &= -\frac{-F_{7}\! \left(x , y z \right) y +F_{7}\! \left(x , z\right)}{-1+y}\\ F_{27}\! \left(x , y\right) &= F_{19}\! \left(x \right) F_{22}\! \left(x , y\right)\\ \end{align*}\)

This specification was found using the strategy pack "Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 19 rules.

Finding the specification took 8 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\ F_{6}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x , y\right) &= -\frac{-F_{8}\! \left(x , y\right) y +F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= y x F_{8}\! \left(x , y\right)^{2}+1\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{12}\! \left(x , y\right) &= -\frac{-y F_{13}\! \left(x , y\right)+F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{18}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , 1, y\right)\\ F_{16}\! \left(x , y , z\right) &= -\frac{-F_{7}\! \left(x , y z \right) y +F_{7}\! \left(x , z\right)}{-1+y}\\ F_{17}\! \left(x , y\right) &= y x\\ F_{18}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{9}\! \left(x \right)\\ \end{align*}\)