Av(12345, 12435, 12453, 13245, 13425, 14235, 14253, 14325, 31245, 31425)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 540, 2781, 14890, 82250, 465532, 2685564, 15730900, 93310778, 559358632, ...

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 57 rules.

Finding the specification took 797 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 57 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x , y_{0}\right)+F_{6}\! \left(x , y_{0}\right)\\ F_{6}\! \left(x , y_{0}\right) &= F_{15}\! \left(x , y_{0}\right) F_{7}\! \left(x , y_{0}\right)\\ F_{7}\! \left(x , y_{0}\right) &= F_{8}\! \left(x , y_{0}, 1\right)\\ F_{8}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{44}\! \left(x , y_{0}, y_{1}\right)+F_{54}\! \left(x , y_{0}, y_{1}\right)+F_{9}\! \left(x , y_{0}, y_{1}\right)\\ F_{9}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x , y_{0}, y_{1}\right) F_{15}\! \left(x , y_{0}\right)\\ F_{10}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{11}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{12}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{12}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{12}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y_{0}, y_{1}\right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{6}\! \left(x , y_{1}\right)\\ F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}, y_{1}\right) F_{15}\! \left(x , y_{0}\right)\\ F_{15}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{1}\right) F_{49}\! \left(x \right)\\ F_{17}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{20}\! \left(x , y_{1}, y_{2}\right)+F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{52}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{19}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{0}\right) F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{20}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}\right) F_{21}\! \left(x , y_{0}, y_{1}\right)\\ F_{21}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{8}\! \left(x , y_{0}, 1\right) y_{0}-F_{8}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{2}\right) F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{28}\! \left(x , y_{1}, y_{2}\right)+F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{0}\right) F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{26}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{26}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{26}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{27}\! \left(x , 1, y_{1}\right) y_{1}-F_{27}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{27}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{28}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}\right) F_{29}\! \left(x , y_{0}, y_{1}\right)\\ F_{29}\! \left(x , y_{0}, y_{1}\right) &= F_{30}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{26}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{26}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\ F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{2}\right) F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{33}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{33}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{33}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{34}\! \left(x , 1, y_{1}\right) y_{1}-F_{34}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{34}\! \left(x , y_{0}, y_{1}\right) &= F_{35}\! \left(x , y_{0}, y_{1}, 1\right)\\ F_{35}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{26}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{2}\right) F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{38}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{38}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{38}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{39}\! \left(x , 1, y_{1}\right) y_{1}-F_{39}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{39}\! \left(x , y_{0}, y_{1}\right) &= F_{40}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{1}\right)+F_{43}\! \left(x , y_{1}\right)+F_{46}\! \left(x , y_{0}, y_{1}\right)\\ F_{41}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}\right) F_{26}\! \left(x , y_{0}, y_{1}\right)\\ F_{42}\! \left(x , y_{0}\right) &= F_{9}\! \left(x , y_{0}, 1\right)\\ F_{43}\! \left(x , y_{0}\right) &= F_{44}\! \left(x , y_{0}, 1\right)\\ F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{45}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{1}\right) F_{40}\! \left(x , y_{0}, y_{1}\right)\\ F_{46}\! \left(x , y_{0}, y_{1}\right) &= F_{47}\! \left(x , y_{0}, y_{1}\right) F_{49}\! \left(x \right)\\ F_{47}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{48}\! \left(x , 1, y_{1}\right) y_{1}-F_{48}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{48}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0} y_{1}, y_{1}\right)\\ F_{49}\! \left(x \right) &= x\\ F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{49}\! \left(x \right) F_{51}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{51}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{47}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{47}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\ F_{52}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{49}\! \left(x \right) F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}+F_{18}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\ F_{54}\! \left(x , y_{0}, y_{1}\right) &= F_{16}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{55}\! \left(x , y_{0}\right) &= F_{49}\! \left(x \right) F_{56}\! \left(x , y_{0}\right)\\ F_{56}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{5}\! \left(x , y_{0}\right)+F_{5}\! \left(x , 1\right)}{-1+y_{0}}\\ \end{align*}\)