Av(12345, 12435, 12453, 13245, 13425, 14235, 14253, 14325, 31245, 31425)
Counting Sequence
1, 1, 2, 6, 24, 110, 540, 2781, 14890, 82250, 465532, 2685564, 15730900, 93310778, 559358632, ...
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 57 rules.
Finding the specification took 797 seconds.
Copy 57 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\
F_{5}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{55}\! \left(x , y_{0}\right)+F_{6}\! \left(x , y_{0}\right)\\
F_{6}\! \left(x , y_{0}\right) &= F_{15}\! \left(x , y_{0}\right) F_{7}\! \left(x , y_{0}\right)\\
F_{7}\! \left(x , y_{0}\right) &= F_{8}\! \left(x , y_{0}, 1\right)\\
F_{8}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{44}\! \left(x , y_{0}, y_{1}\right)+F_{54}\! \left(x , y_{0}, y_{1}\right)+F_{9}\! \left(x , y_{0}, y_{1}\right)\\
F_{9}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x , y_{0}, y_{1}\right) F_{15}\! \left(x , y_{0}\right)\\
F_{10}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{11}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{12}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{12}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{12}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{13}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y_{0}, y_{1}\right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{6}\! \left(x , y_{1}\right)\\
F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}, y_{1}\right) F_{15}\! \left(x , y_{0}\right)\\
F_{15}\! \left(x , y_{0}\right) &= y_{0} x\\
F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0}, y_{1}\right) F_{49}\! \left(x \right)\\
F_{17}\! \left(x , y_{0}, y_{1}\right) &= F_{18}\! \left(x , y_{0}, y_{1}, 1\right)\\
F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{20}\! \left(x , y_{1}, y_{2}\right)+F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{52}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{19}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{0}\right) F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{20}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}\right) F_{21}\! \left(x , y_{0}, y_{1}\right)\\
F_{21}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{8}\! \left(x , y_{0}, 1\right) y_{0}-F_{8}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{2}\right) F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{28}\! \left(x , y_{1}, y_{2}\right)+F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{0}\right) F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{26}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{26}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{26}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{27}\! \left(x , 1, y_{1}\right) y_{1}-F_{27}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{27}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{0}, y_{1}, 1\right)\\
F_{28}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}\right) F_{29}\! \left(x , y_{0}, y_{1}\right)\\
F_{29}\! \left(x , y_{0}, y_{1}\right) &= F_{30}\! \left(x , 1, y_{0}, y_{1}\right)\\
F_{30}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{26}\! \left(x , y_{0} y_{1}, y_{2}\right) y_{0}+F_{26}\! \left(x , y_{1}, y_{2}\right)}{-1+y_{0}}\\
F_{31}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{2}\right) F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{32}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{33}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{33}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{33}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{34}\! \left(x , 1, y_{1}\right) y_{1}-F_{34}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{34}\! \left(x , y_{0}, y_{1}\right) &= F_{35}\! \left(x , y_{0}, y_{1}, 1\right)\\
F_{35}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{26}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\
F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{15}\! \left(x , y_{2}\right) F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{38}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{38}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{38}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{39}\! \left(x , 1, y_{1}\right) y_{1}-F_{39}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{39}\! \left(x , y_{0}, y_{1}\right) &= F_{40}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{1}\right)+F_{43}\! \left(x , y_{1}\right)+F_{46}\! \left(x , y_{0}, y_{1}\right)\\
F_{41}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}\right) F_{26}\! \left(x , y_{0}, y_{1}\right)\\
F_{42}\! \left(x , y_{0}\right) &= F_{9}\! \left(x , y_{0}, 1\right)\\
F_{43}\! \left(x , y_{0}\right) &= F_{44}\! \left(x , y_{0}, 1\right)\\
F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{45}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{1}\right) F_{40}\! \left(x , y_{0}, y_{1}\right)\\
F_{46}\! \left(x , y_{0}, y_{1}\right) &= F_{47}\! \left(x , y_{0}, y_{1}\right) F_{49}\! \left(x \right)\\
F_{47}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{48}\! \left(x , 1, y_{1}\right) y_{1}-F_{48}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\
F_{48}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
F_{49}\! \left(x \right) &= x\\
F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{49}\! \left(x \right) F_{51}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{51}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{47}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{47}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
F_{52}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{49}\! \left(x \right) F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{18}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}+F_{18}\! \left(x , y_{0}, y_{1}, 1\right)}{-1+y_{2}}\\
F_{54}\! \left(x , y_{0}, y_{1}\right) &= F_{16}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
F_{55}\! \left(x , y_{0}\right) &= F_{49}\! \left(x \right) F_{56}\! \left(x , y_{0}\right)\\
F_{56}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{5}\! \left(x , y_{0}\right)+F_{5}\! \left(x , 1\right)}{-1+y_{0}}\\
\end{align*}\)