Av(12345, 12435, 12453, 13245, 13425, 13452, 14235, 14253, 14325, 14352, 14523, 14532)
Generating Function
\(\displaystyle \frac{2 x^{3}-5 x^{2}-\sqrt{12 x^{2}-8 x +1}+5 x +1}{x \left(2 x -3\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 24, 108, 512, 2506, 12560, 64148, 332704, 1747748, 9280416, 49731768, 268613568, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(2 x -3\right)^{2} F \left(x
\right)^{2}+\left(-4 x^{3}+10 x^{2}-10 x -2\right) F \! \left(x \right)+x^{3}-2 x^{2}+3 x +2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 \left(n +2\right) a \! \left(n \right)}{n +4}-\frac{4 \left(13 n +23\right) a \! \left(1+n \right)}{3 \left(n +4\right)}+\frac{2 \left(13 n +35\right) a \! \left(n +2\right)}{3 \left(n +4\right)}, \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 \left(n +2\right) a \! \left(n \right)}{n +4}-\frac{4 \left(13 n +23\right) a \! \left(1+n \right)}{3 \left(n +4\right)}+\frac{2 \left(13 n +35\right) a \! \left(n +2\right)}{3 \left(n +4\right)}, \quad n \geq 4\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 20 rules.
Found on January 22, 2022.Finding the specification took 18 seconds.
Copy 20 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{18}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\
F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\
F_{5}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\
F_{6}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\
F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{6}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= y x\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{6}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x \right) F_{9}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= \frac{F_{4}\! \left(x , y\right) y -F_{4}\! \left(x , 1\right)}{-1+y}\\
F_{18}\! \left(x \right) &= x\\
F_{19}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x \right)\\
\end{align*}\)