Av(12345, 12435)
Counting Sequence
      
        1, 1, 2, 6, 24, 118, 672, 4258, 29241, 213865, 1645677, 13204357, 109723588, 939262476, 8247972113, ...
      
      
    This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 50 rules.
Finding the specification took 14115 seconds.
            
              Copy 50 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= x\\
                
                F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\
                
                F_{5}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x , y_{0}\right)+F_{8}\! \left(x , y_{0}\right)\\
                
                F_{6}\! \left(x , y_{0}\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y_{0}\right)\\
                
                F_{7}\! \left(x , y_{0}\right) &= -\frac{-F_{5}\! \left(x , y_{0}\right) y_{0}+F_{5}\! \left(x , 1\right)}{-1+y_{0}}\\
                
                F_{8}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{9}\! \left(x , y_{0}\right) &= y_{0} x\\
                
                F_{10}\! \left(x , y_{0}\right) &= F_{11}\! \left(x , 1, y_{0}\right)\\
                
                F_{11}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
                
                F_{12}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y_{0}, y_{1}\right)+F_{15}\! \left(x , y_{0}, y_{1}\right)+F_{18}\! \left(x , y_{1}, y_{0}\right)\\
                
                F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}, y_{1}\right) F_{3}\! \left(x \right)\\
                
                F_{14}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{12}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{12}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{16}\! \left(x , y_{0}, y_{1}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{16}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{17}\! \left(x , y_{0}, 1\right) y_{0}-F_{17}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\
                
                F_{17}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
                
                F_{18}\! \left(x , y_{0}, y_{1}\right) &= F_{19}\! \left(x , y_{1}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{19}\! \left(x , y_{0}, y_{1}\right) &= F_{20}\! \left(x , y_{0}, 1, y_{1}\right)\\
                
                F_{20}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{21}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\
                
                F_{21}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y_{1}, y_{0}\right)+F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{49}\! \left(x , y_{2}, y_{0}, y_{1}\right)\\
                
                F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{3}\! \left(x \right)\\
                
                F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{21}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{21}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
                
                F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{26}\! \left(x , 1, y_{0}, y_{1}, y_{2}\right)\\
                
                F_{26}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{29}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{39}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right)+F_{44}\! \left(x , y_{2}, y_{0}, y_{1}\right)+F_{48}\! \left(x , y_{3}, y_{0}, y_{1}, y_{2}\right)\\
                
                F_{27}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{28}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) F_{3}\! \left(x \right)\\
                
                F_{28}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{F_{26}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) y_{0} y_{1}-F_{26}\! \left(x , \frac{1}{y_{1}}, y_{1}, y_{2}, y_{3}\right)}{y_{0} y_{1}-1}\\
                
                F_{29}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{30}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}, y_{3}\right)\\
                
                F_{31}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{32}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{34}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right)+F_{36}\! \left(x , y_{2}, y_{0}, y_{1}\right)+F_{38}\! \left(x , y_{3}, y_{0}, y_{1}, y_{2}\right)\\
                
                F_{31}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{F_{21}\! \left(x , y_{0}, y_{2}, y_{3}\right) y_{0}-F_{21}\! \left(x , y_{1}, y_{2}, y_{3}\right) y_{1}}{-y_{1}+y_{0}}\\
                
                F_{32}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{3}\! \left(x \right) F_{33}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)\\
                
                F_{33}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{-F_{31}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) y_{0}+F_{31}\! \left(x , 1, y_{1}, y_{2}, y_{3}\right)}{-1+y_{0}}\\
                
                F_{34}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{35}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{35}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{F_{26}\! \left(x , 1, y_{1}, y_{2}, y_{3}\right) y_{1}-F_{26}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}, y_{3}\right) y_{0}}{-y_{1}+y_{0}}\\
                
                F_{36}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{37}\! \left(x , y_{1}, y_{2}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{19}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{19}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
                
                F_{38}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{31}\! \left(x , y_{1}, y_{2}, y_{3}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{39}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{40}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{40}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{F_{41}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}-F_{41}\! \left(x , y_{0}, y_{1}, y_{3}\right) y_{3}}{-y_{3}+y_{2}}\\
                
                F_{41}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{42}\! \left(x , y_{0}, y_{1}, 1\right) y_{1}-F_{42}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right) y_{2}}{-y_{2}+y_{1}}\\
                
                F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{43}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
                
                F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{21}\! \left(x , y_{0}, y_{1}, y_{1} y_{2}\right)\\
                
                F_{44}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{45}\! \left(x , y_{1}, y_{2}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{45}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{46}\! \left(x , y_{0}, y_{1}, 1, y_{2}\right)\\
                
                F_{46}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{-y_{1} y_{2} F_{47}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{3}}, y_{3}\right)+y_{3} F_{47}\! \left(x , y_{0}, y_{1}, \frac{1}{y_{1}}, y_{3}\right)}{y_{1} y_{2}-y_{3}}\\
                
                F_{47}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{20}\! \left(x , y_{0} y_{1}, y_{1} y_{2}, y_{3}\right)\\
                
                F_{48}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{26}\! \left(x , y_{1}, y_{2}, y_{3}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                F_{49}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{21}\! \left(x , y_{1}, y_{2}, y_{0}\right) F_{9}\! \left(x , y_{0}\right)\\
                
                \end{align*}\)
            
          This specification was found using the strategy pack "Point And Row And Col Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 51 rules.
Finding the specification took 18550 seconds.
            
              Copy 51 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= x\\
                
                F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\
                
                F_{6}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x , y_{0}\right)+F_{9}\! \left(x , y_{0}\right)\\
                
                F_{7}\! \left(x , y_{0}\right) &= F_{4}\! \left(x \right) F_{8}\! \left(x , y_{0}\right)\\
                
                F_{8}\! \left(x , y_{0}\right) &= -\frac{-F_{6}\! \left(x , y_{0}\right) y_{0}+F_{6}\! \left(x , 1\right)}{-1+y_{0}}\\
                
                F_{9}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , y_{0}\right) F_{11}\! \left(x , y_{0}\right)\\
                
                F_{10}\! \left(x , y_{0}\right) &= y_{0} x\\
                
                F_{11}\! \left(x , y_{0}\right) &= F_{12}\! \left(x , 1, y_{0}\right)\\
                
                F_{12}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0} y_{1}, y_{1}\right)\\
                
                F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y_{0}, y_{1}\right)+F_{16}\! \left(x , y_{0}, y_{1}\right)+F_{19}\! \left(x , y_{1}, y_{0}\right)\\
                
                F_{14}\! \left(x , y_{0}, y_{1}\right) &= F_{15}\! \left(x , y_{0}, y_{1}\right) F_{4}\! \left(x \right)\\
                
                F_{15}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-F_{13}\! \left(x , y_{0}, y_{1}\right) y_{0}+F_{13}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x , y_{0}\right) F_{17}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{17}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{18}\! \left(x , y_{0}, 1\right) y_{0}-F_{18}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right) y_{1}}{-y_{1}+y_{0}}\\
                
                F_{18}\! \left(x , y_{0}, y_{1}\right) &= F_{13}\! \left(x , y_{0}, y_{0} y_{1}\right)\\
                
                F_{19}\! \left(x , y_{0}, y_{1}\right) &= F_{10}\! \left(x , y_{0}\right) F_{20}\! \left(x , y_{1}, y_{0}\right)\\
                
                F_{20}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x , y_{0}, 1, y_{1}\right)\\
                
                F_{21}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{22}\! \left(x , y_{0}, y_{1} y_{2}, y_{2}\right)\\
                
                F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y_{1}, y_{0}\right)+F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{50}\! \left(x , y_{2}, y_{0}, y_{1}\right)\\
                
                F_{23}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{4}\! \left(x \right)\\
                
                F_{24}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{-F_{22}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{0}+F_{22}\! \left(x , 1, y_{1}, y_{2}\right)}{-1+y_{0}}\\
                
                F_{25}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x , y_{0}\right) F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{26}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{27}\! \left(x , 1, y_{0}, y_{1}, y_{2}\right)\\
                
                F_{27}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{30}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{40}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right)+F_{45}\! \left(x , y_{2}, y_{0}, y_{1}\right)+F_{49}\! \left(x , y_{3}, y_{0}, y_{1}, y_{2}\right)\\
                
                F_{28}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{29}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) F_{4}\! \left(x \right)\\
                
                F_{29}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{F_{27}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) y_{0} y_{1}-F_{27}\! \left(x , \frac{1}{y_{1}}, y_{1}, y_{2}, y_{3}\right)}{y_{0} y_{1}-1}\\
                
                F_{30}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{31}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}, y_{3}\right)\\
                
                F_{32}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{33}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right)+F_{35}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right)+F_{37}\! \left(x , y_{2}, y_{0}, y_{1}\right)+F_{39}\! \left(x , y_{3}, y_{0}, y_{1}, y_{2}\right)\\
                
                F_{32}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{F_{22}\! \left(x , y_{0}, y_{2}, y_{3}\right) y_{0}-F_{22}\! \left(x , y_{1}, y_{2}, y_{3}\right) y_{1}}{-y_{1}+y_{0}}\\
                
                F_{33}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{34}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) F_{4}\! \left(x \right)\\
                
                F_{34}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{-F_{32}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) y_{0}+F_{32}\! \left(x , 1, y_{1}, y_{2}, y_{3}\right)}{-1+y_{0}}\\
                
                F_{35}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{10}\! \left(x , y_{0}\right) F_{36}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right)\\
                
                F_{36}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{F_{27}\! \left(x , 1, y_{1}, y_{2}, y_{3}\right) y_{1}-F_{27}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}, y_{3}\right) y_{0}}{-y_{1}+y_{0}}\\
                
                F_{37}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x , y_{0}\right) F_{38}\! \left(x , y_{1}, y_{2}, y_{0}\right)\\
                
                F_{38}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{20}\! \left(x , y_{0}, y_{2}\right) y_{0}-F_{20}\! \left(x , y_{1}, y_{2}\right) y_{1}}{-y_{1}+y_{0}}\\
                
                F_{39}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{10}\! \left(x , y_{0}\right) F_{32}\! \left(x , y_{1}, y_{2}, y_{3}, y_{0}\right)\\
                
                F_{40}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{10}\! \left(x , y_{0}\right) F_{41}\! \left(x , y_{1}, y_{0}, y_{2}, y_{3}\right)\\
                
                F_{41}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= \frac{F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right) y_{2}-F_{42}\! \left(x , y_{0}, y_{1}, y_{3}\right) y_{3}}{-y_{3}+y_{2}}\\
                
                F_{42}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{F_{43}\! \left(x , y_{0}, y_{1}, 1\right) y_{1}-F_{43}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right) y_{2}}{-y_{2}+y_{1}}\\
                
                F_{43}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{44}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
                
                F_{44}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{22}\! \left(x , y_{0}, y_{1}, y_{1} y_{2}\right)\\
                
                F_{45}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x , y_{0}\right) F_{46}\! \left(x , y_{1}, y_{2}, y_{0}\right)\\
                
                F_{46}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{47}\! \left(x , y_{0}, y_{1}, 1, y_{2}\right)\\
                
                F_{47}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= -\frac{-y_{1} y_{2} F_{48}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{3}}, y_{3}\right)+y_{3} F_{48}\! \left(x , y_{0}, y_{1}, \frac{1}{y_{1}}, y_{3}\right)}{y_{1} y_{2}-y_{3}}\\
                
                F_{48}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{21}\! \left(x , y_{0} y_{1}, y_{1} y_{2}, y_{3}\right)\\
                
                F_{49}\! \left(x , y_{0}, y_{1}, y_{2}, y_{3}\right) &= F_{10}\! \left(x , y_{0}\right) F_{27}\! \left(x , y_{1}, y_{2}, y_{3}, y_{0}\right)\\
                
                F_{50}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{10}\! \left(x , y_{0}\right) F_{22}\! \left(x , y_{1}, y_{2}, y_{0}\right)\\
                
                \end{align*}\)