Av(12345, 12354, 12453, 13452)
Counting Sequence
1, 1, 2, 6, 24, 116, 634, 3767, 23760, 156689, 1069386, 7499525, 53764866, 392525886, 2909915076, ...
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 56 rules.
Finding the specification took 1807 seconds.
Copy 56 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{43}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{18}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{41}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\
F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , 1, y\right)\\
F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y z , z\right)\\
F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)+F_{16}\! \left(x , y , z\right)+F_{19}\! \left(x , z\right)\\
F_{12}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right) F_{13}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= y x\\
F_{14}\! \left(x , y , z\right) &= F_{13}\! \left(x , z\right) F_{15}\! \left(x , y , z\right)\\
F_{15}\! \left(x , y , z\right) &= -\frac{F_{10}\! \left(x , 1, z\right) z -F_{10}\! \left(x , \frac{y}{z}, z\right) y}{-z +y}\\
F_{16}\! \left(x , y , z\right) &= F_{17}\! \left(x , y , z\right) F_{18}\! \left(x \right)\\
F_{17}\! \left(x , y , z\right) &= -\frac{-z F_{11}\! \left(x , y , z\right)+F_{11}\! \left(x , y , 1\right)}{-1+z}\\
F_{18}\! \left(x \right) &= x\\
F_{19}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{20}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x , y\right)+F_{22}\! \left(x , y\right)+F_{24}\! \left(x , y\right)+F_{32}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{23}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= -\frac{-y F_{20}\! \left(x , y\right)+F_{20}\! \left(x , 1\right)}{-1+y}\\
F_{24}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{25}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y , 1\right)\\
F_{26}\! \left(x , y , z\right) &= -\frac{-F_{27}\! \left(x , y , z\right) z +F_{27}\! \left(x , y , 1\right)}{-1+z}\\
F_{27}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y , z\right)+F_{28}\! \left(x , y , z\right)+F_{29}\! \left(x , y , z\right)+F_{30}\! \left(x , y , z\right)\\
F_{28}\! \left(x , y , z\right) &= F_{13}\! \left(x , y\right) F_{27}\! \left(x , y , z\right)\\
F_{29}\! \left(x , y , z\right) &= F_{18}\! \left(x \right) F_{26}\! \left(x , y , z\right)\\
F_{30}\! \left(x , y , z\right) &= F_{18}\! \left(x \right) F_{31}\! \left(x , y , z\right)\\
F_{31}\! \left(x , y , z\right) &= \frac{y F_{20}\! \left(x , y\right)-z F_{20}\! \left(x , z\right)}{-z +y}\\
F_{32}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{33}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{34}\! \left(x , y , 1\right)\\
F_{34}\! \left(x , y , z\right) &= -\frac{-F_{35}\! \left(x , y , z\right) z +F_{35}\! \left(x , y , 1\right)}{-1+z}\\
F_{35}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y , z\right)+F_{36}\! \left(x , y , z\right)+F_{37}\! \left(x , y , z\right)+F_{40}\! \left(x , y , z\right)\\
F_{36}\! \left(x , y , z\right) &= F_{13}\! \left(x , y\right) F_{35}\! \left(x , y , z\right)\\
F_{37}\! \left(x , y , z\right) &= F_{13}\! \left(x , z\right) F_{38}\! \left(x , y , z\right)\\
F_{38}\! \left(x , y , z\right) &= -\frac{F_{39}\! \left(x , 1, z\right) z -F_{39}\! \left(x , \frac{y}{z}, z\right) y}{-z +y}\\
F_{39}\! \left(x , y , z\right) &= F_{35}\! \left(x , y z , z\right)\\
F_{40}\! \left(x , y , z\right) &= F_{18}\! \left(x \right) F_{34}\! \left(x , y , z\right)\\
F_{41}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{42}\! \left(x , y\right)\\
F_{42}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\
F_{43}\! \left(x \right) &= F_{18}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{45}\! \left(x \right)+F_{47}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{18}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{20}\! \left(x , 1\right)\\
F_{47}\! \left(x \right) &= F_{18}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{42}\! \left(x , 1\right)\\
F_{49}\! \left(x \right) &= F_{18}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x , 1\right)\\
F_{51}\! \left(x , y\right) &= -\frac{-y F_{52}\! \left(x , y\right)+F_{52}\! \left(x , 1\right)}{-1+y}\\
F_{52}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x , y\right)+F_{53}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{39}\! \left(x , 1, y\right)\\
F_{55}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{51}\! \left(x , y\right)\\
\end{align*}\)