Av(12345, 12354, 12435, 21345, 21354, 21435, 23145, 23154, 23415, 24135, 24315)
Counting Sequence
1, 1, 2, 6, 24, 109, 526, 2629, 13419, 69409, 362240, 1902494, 10038341, 53151675, 282190446, ...
This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 81 rules.
Finding the specification took 1459 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 81 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{50}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)+F_{72}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{50}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\
F_{9}\! \left(x , y\right) &= -\frac{-F_{10}\! \left(x , y\right) y +F_{10}\! \left(x , 1\right)}{-1+y}\\
F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right)+F_{4}\! \left(x \right)\\
F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\
F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{64}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)+F_{71}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)+F_{19}\! \left(x \right)\\
F_{15}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x , y\right) &= -\frac{-F_{15}\! \left(x , y\right) y +F_{15}\! \left(x , 1\right)}{-1+y}\\
F_{19}\! \left(x \right) &= -F_{70}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= -F_{43}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{50}\! \left(x \right)}\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= \frac{F_{24}\! \left(x \right)}{F_{50}\! \left(x \right)}\\
F_{24}\! \left(x \right) &= -F_{26}\! \left(x \right)-F_{27}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= 0\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)+F_{65}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x , 1\right)\\
F_{31}\! \left(x , y\right) &= -\frac{-y F_{32}\! \left(x , y\right)+F_{32}\! \left(x , 1\right)}{-1+y}\\
F_{33}\! \left(x , y\right) &= -\frac{-y F_{32}\! \left(x , y\right)+F_{32}\! \left(x , 1\right)}{-1+y}\\
F_{33}\! \left(x , y\right) &= F_{28}\! \left(x \right)+F_{34}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right) F_{64}\! \left(x , y\right)\\
F_{36}\! \left(x , y\right) &= F_{37}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)+F_{54}\! \left(x \right)\\
F_{38}\! \left(x , y\right) &= -\frac{-F_{39}\! \left(x , y\right) y +F_{39}\! \left(x , 1\right)}{-1+y}\\
F_{39}\! \left(x , y\right) &= F_{32}\! \left(x , y\right)+F_{40}\! \left(x , y\right)+F_{52}\! \left(x , y\right)\\
F_{40}\! \left(x , y\right) &= F_{41}\! \left(x , y\right)\\
F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{42}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x , 1\right)\\
F_{45}\! \left(x , y\right) &= y F_{46}\! \left(x , y\right)\\
F_{46}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{47}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\
F_{47}\! \left(x , y\right) &= F_{48}\! \left(x , y\right)\\
F_{48}\! \left(x , y\right) &= F_{49}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{49}\! \left(x , y\right) &= -\frac{-y F_{46}\! \left(x , y\right)+F_{46}\! \left(x , 1\right)}{-1+y}\\
F_{50}\! \left(x \right) &= x\\
F_{51}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{52}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{37}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x , 1\right)\\
F_{55}\! \left(x , y\right) &= y F_{56}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= F_{26}\! \left(x \right)+F_{57}\! \left(x , y\right)+F_{58}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{48}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{50}\! \left(x \right) F_{60}\! \left(x , y\right)\\
F_{60}\! \left(x , y\right) &= -\frac{-y F_{56}\! \left(x , y\right)+F_{56}\! \left(x , 1\right)}{-1+y}\\
F_{61}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{50}\! \left(x \right)\\
F_{62}\! \left(x , y\right) &= F_{63}\! \left(x , y\right)\\
F_{63}\! \left(x , y\right) &= y F_{60}\! \left(x , y\right)\\
F_{64}\! \left(x , y\right) &= y x\\
F_{65}\! \left(x \right) &= F_{50}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{50}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{39}\! \left(x , 1\right)\\
F_{70}\! \left(x \right) &= F_{15}\! \left(x , 1\right)\\
F_{71}\! \left(x , y\right) &= F_{45}\! \left(x , y\right)\\
F_{72}\! \left(x \right) &= F_{50}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)+F_{65}\! \left(x \right)+F_{74}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{74}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{72}\! \left(x \right)-F_{78}\! \left(x \right)-F_{79}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{50}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{50}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{50}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{28}\! \left(x \right) F_{50}\! \left(x \right)\\
\end{align*}\)