Av(12345, 12354, 12435, 13425, 21345, 21354, 21435, 31245, 31254, 41253)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 535, 2679, 13632, 70038, 362086, 1879925, 9790321, 51102556, 267207697, ...

This specification was found using the strategy pack "Row And Col Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 79 rules.

Finding the specification took 2367 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 79 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\ F_{7}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{74}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{8}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= -\frac{-F_{7}\! \left(x , y\right) y +F_{7}\! \left(x , 1\right)}{-1+y}\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x \right)+F_{72}\! \left(x , y\right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{15}\! \left(x , y\right) &= -\frac{-F_{13}\! \left(x , y\right) y +F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= y x\\ F_{18}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{22}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)+F_{23}\! \left(x , y\right)+F_{71}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{24}\! \left(x , y\right) &= -\frac{-F_{25}\! \left(x , y\right) y +F_{25}\! \left(x , 1\right)}{-1+y}\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= F_{29}\! \left(x \right)+F_{64}\! \left(x , y\right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{4}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{3}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{46}\! \left(x \right)+F_{6}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{3}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x , 1\right)\\ F_{37}\! \left(x , y\right) &= -\frac{-y F_{38}\! \left(x , y\right)+F_{38}\! \left(x , 1\right)}{-1+y}\\ F_{38}\! \left(x , y\right) &= F_{39}\! \left(x , y\right)+F_{46}\! \left(x \right)+F_{62}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)\\ F_{40}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{41}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)+F_{43}\! \left(x \right)\\ F_{42}\! \left(x , y\right) &= -\frac{-y F_{38}\! \left(x , y\right)+F_{38}\! \left(x , 1\right)}{-1+y}\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= -F_{45}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{28}\! \left(x , 1\right)\\ F_{46}\! \left(x \right) &= F_{3}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{3}\! \left(x \right) F_{50}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{3}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{54}\! \left(x \right) &= -F_{55}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{3}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{50}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{3}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{3}\! \left(x \right)}\\ F_{62}\! \left(x , y\right) &= F_{28}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{3}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{65}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)+F_{68}\! \left(x \right)\\ F_{65}\! \left(x , y\right) &= F_{66}\! \left(x , y\right)+F_{7}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= -\frac{-y F_{65}\! \left(x , y\right)+F_{65}\! \left(x , 1\right)}{-1+y}\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{3}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{65}\! \left(x , 1\right)\\ F_{71}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{72}\! \left(x , y\right) &= F_{73}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{47}\! \left(x \right)\\ F_{74}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{75}\! \left(x , y\right)\\ F_{75}\! \left(x , y\right) &= F_{7}\! \left(x , y\right)+F_{76}\! \left(x , y\right)\\ F_{76}\! \left(x , y\right) &= F_{77}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{28}\! \left(x , y\right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{3}\! \left(x \right)\\ \end{align*}\)