Av(12345, 12354, 12435, 13245, 13254, 13524, 21345, 21354, 21435, 24135)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 537, 2727, 14261, 76290, 415479, 2295527, 12833961, 72469001, 412682100, ...

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Req Corrob Symmetries" and has 201 rules.

Finding the specification took 1786 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 201 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{148}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{198}\! \left(x \right)+F_{199}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= 2 F_{10}\! \left(x \right)+F_{11}\! \left(x \right)+F_{13}\! \left(x \right)+F_{194}\! \left(x \right)\\ F_{10}\! \left(x \right) &= 0\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= -F_{10}\! \left(x \right)-F_{192}\! \left(x \right)-F_{7}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= \frac{F_{19}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= -F_{26}\! \left(x \right)-F_{27}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{25}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= \frac{F_{31}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x , 1\right)\\ F_{33}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{190}\! \left(x , y\right)+F_{191}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)+F_{37}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{33}\! \left(x , y\right)+F_{4}\! \left(x \right)\\ F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{40}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= y x\\ F_{40}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)+F_{41}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= -\frac{-F_{42}\! \left(x , y\right) y +F_{42}\! \left(x , 1\right)}{-1+y}\\ F_{42}\! \left(x , y\right) &= F_{43}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{44}\! \left(x , y\right)\\ F_{44}\! \left(x , y\right) &= F_{187}\! \left(x , y\right)+F_{36}\! \left(x , y\right)+F_{45}\! \left(x , y\right)\\ F_{45}\! \left(x , y\right) &= F_{46}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{47}\! \left(x , y\right)\\ F_{47}\! \left(x , y\right) &= F_{185}\! \left(x \right)+F_{48}\! \left(x , y\right)\\ F_{48}\! \left(x , y\right) &= F_{182}\! \left(x \right)+F_{49}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{49}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{171}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{169}\! \left(x , y\right)+F_{53}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{154}\! \left(x , y\right)+F_{54}\! \left(x , y\right)+F_{57}\! \left(x , y\right)+F_{79}\! \left(x , y\right)+F_{82}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{55}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)+F_{6}\! \left(x \right)\\ F_{56}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{57}\! \left(x , y\right)+F_{58}\! \left(x , y\right)+F_{64}\! \left(x , y\right)+F_{76}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{53}\! \left(x , y\right)\\ F_{58}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{60}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= F_{61}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= \frac{F_{63}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{63}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{64}\! \left(x , y\right) &= F_{65}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{66}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= \frac{F_{69}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{69}\! \left(x \right) &= -F_{6}\! \left(x \right)-F_{70}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{12}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x , 1\right)\\ F_{73}\! \left(x , y\right) &= -\frac{-F_{44}\! \left(x , y\right) y +F_{44}\! \left(x , 1\right)}{-1+y}\\ F_{74}\! \left(x \right) &= -F_{75}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{44}\! \left(x , 1\right)\\ F_{76}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{77}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= -\frac{y \left(F_{78}\! \left(x , 1\right)-F_{78}\! \left(x , y\right)\right)}{-1+y}\\ F_{78}\! \left(x , y\right) &= -\frac{y \left(F_{33}\! \left(x , 1\right)-F_{33}\! \left(x , y\right)\right)}{-1+y}\\ F_{79}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{80}\! \left(x , y\right)\\ F_{80}\! \left(x , y\right) &= F_{8}\! \left(x \right)+F_{81}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)\\ F_{82}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{83}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{153}\! \left(x , y\right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x , 1\right)\\ F_{87}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{65}\! \left(x , y\right)+F_{88}\! \left(x , y\right)+F_{89}\! \left(x , y\right)\\ F_{88}\! \left(x , y\right) &= F_{39}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{89}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)\\ F_{91}\! \left(x , y\right) &= F_{30}\! \left(x \right) F_{39}\! \left(x , y\right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= -F_{152}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= -F_{151}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= \frac{F_{100}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{102}\! \left(x \right)+F_{150}\! \left(x \right)\\ F_{102}\! \left(x \right) &= -F_{10}\! \left(x \right)-F_{148}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= -F_{104}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{109}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{109}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{118}\! \left(x \right)+F_{144}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{115}\! \left(x \right)+F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{12}\! \left(x \right) F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{118}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{105}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{130}\! \left(x \right)+F_{131}\! \left(x \right)+F_{136}\! \left(x \right)\\ F_{130}\! \left(x \right) &= 0\\ F_{131}\! \left(x \right) &= F_{12}\! \left(x \right) F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{134}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{12}\! \left(x \right) F_{137}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{12}\! \left(x \right) F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{142}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{128}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{12}\! \left(x \right) F_{145}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{12}\! \left(x \right) F_{149}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{36}\! \left(x , 1\right)\\ F_{150}\! \left(x \right) &= F_{12}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{151}\! \left(x \right) &= \frac{F_{102}\! \left(x \right)}{F_{12}\! \left(x \right)}\\ F_{152}\! \left(x \right) &= F_{42}\! \left(x , 1\right)\\ F_{153}\! \left(x , y\right) &= F_{66}\! \left(x , y\right)\\ F_{155}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{154}\! \left(x , y\right)+F_{156}\! \left(x , y\right)+F_{158}\! \left(x , y\right)+F_{164}\! \left(x , y\right)+F_{168}\! \left(x , y\right)\\ F_{156}\! \left(x , y\right) &= F_{155}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{157}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{156}\! \left(x , y\right)+F_{158}\! \left(x , y\right)+F_{164}\! \left(x , y\right)+F_{166}\! \left(x , y\right)\\ F_{157}\! \left(x , y\right) &= -\frac{-F_{36}\! \left(x , y\right) y +F_{36}\! \left(x , 1\right)}{-1+y}\\ F_{158}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{159}\! \left(x , y\right)\\ F_{159}\! \left(x , y\right) &= F_{160}\! \left(x \right)+F_{161}\! \left(x , y\right)\\ F_{160}\! \left(x \right) &= F_{35}\! \left(x , 1\right)\\ F_{161}\! \left(x , y\right) &= F_{162}\! \left(x , y\right)\\ F_{162}\! \left(x , y\right) &= F_{163}\! \left(x \right) F_{39}\! \left(x , y\right)\\ F_{163}\! \left(x \right) &= F_{40}\! \left(x , 1\right)\\ F_{164}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{165}\! \left(x , y\right)\\ F_{165}\! \left(x , y\right) &= -\frac{-F_{55}\! \left(x , y\right) y +F_{55}\! \left(x , 1\right)}{-1+y}\\ F_{166}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{167}\! \left(x , y\right)\\ F_{167}\! \left(x , y\right) &= -\frac{-F_{157}\! \left(x , y\right) y +F_{157}\! \left(x , 1\right)}{-1+y}\\ F_{168}\! \left(x , y\right) &= F_{157}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{169}\! \left(x , y\right) &= F_{170}\! \left(x , y\right)\\ F_{171}\! \left(x , y\right) &= F_{170}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\ F_{171}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{172}\! \left(x , y\right)+F_{173}\! \left(x , y\right)+F_{57}\! \left(x , y\right)+F_{79}\! \left(x , y\right)+F_{82}\! \left(x , y\right)\\ F_{172}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{55}\! \left(x , y\right)\\ F_{173}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{174}\! \left(x , y\right)\\ F_{174}\! \left(x , y\right) &= -\frac{-y F_{175}\! \left(x , y\right)+F_{175}\! \left(x , 1\right)}{-1+y}\\ F_{176}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{175}\! \left(x , y\right)\\ F_{177}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{176}\! \left(x , y\right)+F_{180}\! \left(x , y\right)+F_{181}\! \left(x , y\right)+F_{34}\! \left(x , y\right)\\ F_{177}\! \left(x , y\right) &= F_{178}\! \left(x , y\right)+F_{36}\! \left(x , y\right)\\ F_{178}\! \left(x , y\right) &= F_{179}\! \left(x , y\right)\\ F_{179}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{40}\! \left(x , y\right)\\ F_{180}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{36}\! \left(x , y\right)\\ F_{181}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{55}\! \left(x , y\right)\\ F_{182}\! \left(x \right) &= -F_{183}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{183}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{184}\! \left(x \right) &= F_{41}\! \left(x , 1\right)\\ F_{185}\! \left(x \right) &= -F_{186}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{186}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{187}\! \left(x , y\right) &= F_{188}\! \left(x , y\right)\\ F_{188}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{189}\! \left(x , y\right)\\ F_{189}\! \left(x , y\right) &= F_{73}\! \left(x , y\right)+F_{74}\! \left(x \right)\\ F_{190}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{56}\! \left(x , y\right)\\ F_{191}\! \left(x , y\right) &= F_{12}\! \left(x \right) F_{78}\! \left(x , y\right)\\ F_{192}\! \left(x \right) &= F_{12}\! \left(x \right) F_{193}\! \left(x \right)\\ F_{193}\! \left(x \right) &= F_{78}\! \left(x , 1\right)\\ F_{194}\! \left(x \right) &= F_{12}\! \left(x \right) F_{195}\! \left(x \right)\\ F_{195}\! \left(x \right) &= F_{196}\! \left(x , 1\right)\\ F_{196}\! \left(x , y\right) &= F_{197}\! \left(x , y\right)\\ F_{197}\! \left(x , y\right) &= F_{189}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{198}\! \left(x \right) &= F_{12}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{12}\! \left(x \right) F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{157}\! \left(x , 1\right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 115 rules.

Finding the specification took 10572 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 115 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= 0\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{111}\! \left(x \right)+F_{9}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= -F_{18}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x , 1\right)\\ F_{20}\! \left(x , y\right) &= -\frac{-F_{21}\! \left(x , y\right) y +F_{21}\! \left(x , 1\right)}{-1+y}\\ F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)+F_{38}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)+F_{90}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{32}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{4}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)+F_{6}\! \left(x \right)+F_{88}\! \left(x , y\right)+F_{89}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{31}\! \left(x , y\right)\\ F_{31}\! \left(x , y\right) &= y F_{32}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{33}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{34}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{35}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= -\frac{-F_{36}\! \left(x , y\right) y +F_{36}\! \left(x , 1\right)}{-1+y}\\ F_{36}\! \left(x , y\right) &= F_{37}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{39}\! \left(x , y\right)+F_{77}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)\\ F_{40}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{41}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= F_{41}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= F_{42}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)\\ F_{44}\! \left(x , y\right) &= F_{45}\! \left(x , y\right)+F_{6}\! \left(x \right)+F_{61}\! \left(x , y\right)+F_{64}\! \left(x , y\right)+F_{72}\! \left(x , y\right)\\ F_{45}\! \left(x , y\right) &= F_{46}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , y\right)+F_{48}\! \left(x , y\right)\\ F_{47}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{48}\! \left(x , y\right) &= y F_{49}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= 4 F_{6}\! \left(x \right)+F_{50}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{47}\! \left(x , y\right)\\ F_{51}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{52}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= -\frac{-F_{53}\! \left(x , y\right) y +F_{53}\! \left(x , 1\right)}{-1+y}\\ F_{53}\! \left(x , y\right) &= -\frac{-F_{54}\! \left(x , y\right) y +F_{54}\! \left(x , 1\right)}{-1+y}\\ F_{55}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{54}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= -\frac{-F_{55}\! \left(x , y\right) y +F_{55}\! \left(x , 1\right)}{-1+y}\\ F_{57}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{56}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y\right)+F_{57}\! \left(x , y\right)+F_{58}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\ F_{58}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{27}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{47}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= y x\\ F_{61}\! \left(x , y\right) &= F_{62}\! \left(x , y\right)\\ F_{62}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= y F_{11}\! \left(x \right)\\ F_{64}\! \left(x , y\right) &= F_{65}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{66}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= y F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= \frac{F_{68}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{68}\! \left(x \right) &= -F_{6}\! \left(x \right)-F_{69}\! \left(x \right)-F_{9}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{13}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x , 1\right)\\ F_{71}\! \left(x , y\right) &= -\frac{y \left(F_{28}\! \left(x , 1\right)-F_{28}\! \left(x , y\right)\right)}{-1+y}\\ F_{72}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= -\frac{y \left(F_{71}\! \left(x , 1\right)-F_{71}\! \left(x , y\right)\right)}{-1+y}\\ F_{74}\! \left(x , y\right) &= y F_{75}\! \left(x , y\right)\\ F_{75}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)+F_{76}\! \left(x , y\right)\\ F_{76}\! \left(x , y\right) &= -\frac{-F_{20}\! \left(x , y\right) y +F_{20}\! \left(x , 1\right)}{-1+y}\\ F_{77}\! \left(x , y\right) &= F_{78}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{79}\! \left(x , y\right)\\ F_{79}\! \left(x , y\right) &= F_{80}\! \left(x , y\right)+F_{81}\! \left(x \right)\\ F_{80}\! \left(x , y\right) &= -\frac{-F_{38}\! \left(x , y\right) y +F_{38}\! \left(x , 1\right)}{-1+y}\\ F_{81}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= \frac{F_{83}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{83}\! \left(x \right) &= -F_{8}\! \left(x \right)-F_{84}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{13}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= \frac{F_{86}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{86}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{80}\! \left(x , 1\right)\\ F_{88}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{44}\! \left(x , y\right)\\ F_{89}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{71}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)\\ F_{91}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{92}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{41}\! \left(x , y\right)+F_{75}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{94}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{95}\! \left(x , y\right)\\ F_{95}\! \left(x , y\right) &= F_{81}\! \left(x \right)+F_{96}\! \left(x , y\right)\\ F_{96}\! \left(x , y\right) &= -\frac{-F_{25}\! \left(x , y\right) y +F_{25}\! \left(x , 1\right)}{-1+y}\\ F_{97}\! \left(x \right) &= F_{13}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{102}\! \left(x \right)+F_{6}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{28}\! \left(x , 1\right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{110}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{21}\! \left(x , 1\right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x , 1\right)\\ F_{113}\! \left(x , y\right) &= -\frac{-y F_{27}\! \left(x , y\right)+F_{27}\! \left(x , 1\right)}{-1+y}\\ F_{114}\! \left(x \right) &= F_{104}\! \left(x \right) F_{13}\! \left(x \right)\\ \end{align*}\)