Av(12345, 12354, 12435, 13245, 13254, 13425, 14235, 14325, 23145, 23154, 23415, 24135, 24315, 34125, 34215)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 105, 480, 2264, 10940, 53891, 269650, 1366754, 7002992, 36214028, 188760920, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{2} \left(x -2\right) F \left(x \right)^{3}+x \left(x^{2}-2 x +8\right) F \left(x \right)^{2}+\left(-3 x^{3}-9 x -2\right) F \! \left(x \right)+x^{3}+x^{2}+3 x +2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 24\)
\(\displaystyle a \! \left(5\right) = 105\)
\(\displaystyle a \! \left(6\right) = 480\)
\(\displaystyle a \! \left(7\right) = 2264\)
\(\displaystyle a \! \left(8\right) = 10940\)
\(\displaystyle a \! \left(n +9\right) = \frac{n \left(n +1\right) a \! \left(n \right)}{2 \left(n +10\right) \left(n +9\right)}-\frac{\left(28 n +57\right) \left(n +1\right) a \! \left(n +1\right)}{8 \left(n +10\right) \left(n +9\right)}+\frac{\left(213 n^{2}+48 n -989\right) a \! \left(n +2\right)}{64 \left(n +10\right) \left(n +9\right)}-\frac{\left(1451 n^{2}+3233 n -2478\right) a \! \left(n +3\right)}{384 \left(n +10\right) \left(n +9\right)}+\frac{\left(1304 n^{2}+2057 n -23145\right) a \! \left(n +4\right)}{192 \left(n +10\right) \left(n +9\right)}+\frac{\left(2365 n^{2}+25891 n +71898\right) a \! \left(n +5\right)}{96 \left(n +10\right) \left(n +9\right)}-\frac{\left(251 n^{2}+2478 n +5163\right) a \! \left(n +6\right)}{16 \left(n +10\right) \left(n +9\right)}-\frac{\left(272 n^{2}+4661 n +19851\right) a \! \left(n +7\right)}{24 \left(n +10\right) \left(n +9\right)}+\frac{\left(97 n +829\right) a \! \left(n +8\right)}{12 n +120}, \quad n \geq 9\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 18 rules.

Found on January 23, 2022.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 18 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= \frac{F_{5}\! \left(x , y\right) y -F_{5}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= y x\\ F_{10}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{14}\! \left(x , y\right)+F_{16}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{13}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{13}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 19 rules.

Found on January 22, 2022.

Finding the specification took 21 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= y x\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , 1, y\right)\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{15}\! \left(x , y , z\right)+F_{17}\! \left(x , z , y\right)\\ F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , z , y\right)\\ F_{13}\! \left(x , y , z\right) &= F_{14}\! \left(x , y\right) F_{3}\! \left(x \right) F_{7}\! \left(x , z\right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{15}\! \left(x , y , z\right) &= F_{16}\! \left(x , z , y\right)\\ F_{16}\! \left(x , y , z\right) &= F_{10}\! \left(x , z\right) F_{14}\! \left(x , y\right) F_{9}\! \left(x , z\right)\\ F_{17}\! \left(x , y , z\right) &= F_{18}\! \left(x , y , z\right)\\ F_{18}\! \left(x , y , z\right) &= F_{11}\! \left(x , z , y\right) F_{14}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ \end{align*}\)