Av(12345, 12354, 12435, 13245, 13254, 13425, 13452, 13524, 13542, 14235, 14325, 14352, 21345, 21354, 21435)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 105, 485, 2324, 11448, 57585, 294483, 1526201, 7997663, 42301336, 225524751, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 30 rules.

Found on January 23, 2022.

Finding the specification took 5 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 30 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{12}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{14}\! \left(x , y\right) &= -\frac{-y F_{15}\! \left(x , y\right)+F_{15}\! \left(x , 1\right)}{-1+y}\\ F_{15}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{20}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{18}\! \left(x , y\right) F_{19}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= y x\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{21}\! \left(x , y\right) &= -\frac{-y F_{22}\! \left(x , y\right)+F_{22}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y\right)+F_{25}\! \left(x , y\right)+F_{27}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{19}\! \left(x , y\right) F_{22}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{27}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x , 1\right)\\ \end{align*}\)