Av(12345, 12354, 12435, 13245, 13254, 13425, 13452, 13524, 13542, 14235, 14325, 14352)
Counting Sequence
1, 1, 2, 6, 24, 108, 517, 2575, 13195, 69084, 367844, 1985414, 10836931, 59710492, 331651018, ...
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 34 rules.
Found on January 23, 2022.Finding the specification took 8 seconds.
Copy 34 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x , 1\right)\\
F_{16}\! \left(x , y\right) &= -\frac{-y F_{17}\! \left(x , y\right)+F_{17}\! \left(x , 1\right)}{-1+y}\\
F_{17}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)+F_{24}\! \left(x , y\right)+F_{31}\! \left(x , y\right)\\
F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{20}\! \left(x , y\right) F_{23}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x , y\right)\\
F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\
F_{22}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{23}\! \left(x , y\right)\\
F_{23}\! \left(x , y\right) &= y x\\
F_{24}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{25}\! \left(x , y\right)\\
F_{25}\! \left(x , y\right) &= -\frac{-y F_{26}\! \left(x , y\right)+F_{26}\! \left(x , 1\right)}{-1+y}\\
F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x , y\right)+F_{29}\! \left(x , y\right)+F_{31}\! \left(x , y\right)\\
F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{23}\! \left(x , y\right) F_{26}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{20}\! \left(x , y\right) F_{5}\! \left(x \right)\\
F_{31}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{16}\! \left(x , y\right)\\
F_{32}\! \left(x \right) &= F_{11}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{17}\! \left(x , 1\right)\\
\end{align*}\)