Av(12345, 12354, 12435, 12453, 12534, 12543, 13425, 13524, 23415, 23514)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 540, 2762, 14544, 78342, 429852, 2394858, 13514320, 77090282, 443819364, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 39 rules.

Found on January 23, 2022.

Finding the specification took 41 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 39 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{13}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{13}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)+F_{33}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{14}\! \left(x , y\right)+F_{30}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= -\frac{-y F_{8}\! \left(x , y\right)+F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= -\frac{-y F_{16}\! \left(x , y\right)+F_{16}\! \left(x , 1\right)}{-1+y}\\ F_{16}\! \left(x , y\right) &= -\frac{-y F_{17}\! \left(x , y\right)+F_{17}\! \left(x , 1\right)}{-1+y}\\ F_{17}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)+F_{19}\! \left(x , y\right)+F_{20}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{16}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= -\frac{-y F_{22}\! \left(x , y\right)+F_{22}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x , y\right)+F_{23}\! \left(x , y\right)+F_{24}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{8}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{13}\! \left(x \right) F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{26}\! \left(x , y\right)+F_{27}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{13}\! \left(x \right)\\ F_{21}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y\right)+F_{27}\! \left(x , y\right)+F_{28}\! \left(x , y\right)+F_{29}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\ F_{29}\! \left(x \right) &= F_{18}\! \left(x , 1\right)\\ F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{28}\! \left(x , y\right)+F_{29}\! \left(x \right)+F_{30}\! \left(x , y\right)\\ F_{31}\! \left(x \right) &= F_{13}\! \left(x \right) F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{16}\! \left(x , 1\right)\\ F_{33}\! \left(x \right) &= F_{13}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{21}\! \left(x , 1\right)\\ F_{35}\! \left(x \right) &= F_{13}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)+F_{38}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{24}\! \left(x , 1\right)\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 25 rules.

Found on January 22, 2022.

Finding the specification took 13 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 25 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ F_{8}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= y x\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , 1, y\right)\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)+F_{21}\! \left(x , z , y\right)\\ F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right) F_{3}\! \left(x \right)\\ F_{13}\! \left(x , y , z\right) &= \frac{y z F_{11}\! \left(x , y , z\right)-F_{11}\! \left(x , \frac{1}{z}, z\right)}{y z -1}\\ F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y z , z\right)\\ F_{16}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y , z\right)+F_{17}\! \left(x , y , z\right)+F_{19}\! \left(x , z , y\right)\\ F_{16}\! \left(x , y , z\right) &= \frac{y F_{5}\! \left(x , y\right)-z F_{5}\! \left(x , z\right)}{-z +y}\\ F_{17}\! \left(x , y , z\right) &= F_{18}\! \left(x , y , z\right) F_{3}\! \left(x \right)\\ F_{18}\! \left(x , y , z\right) &= -\frac{-y F_{16}\! \left(x , y , z\right)+F_{16}\! \left(x , 1, z\right)}{-1+y}\\ F_{19}\! \left(x , y , z\right) &= F_{20}\! \left(x , z , y\right) F_{9}\! \left(x , y\right)\\ F_{20}\! \left(x , y , z\right) &= -\frac{z F_{11}\! \left(x , 1, z\right)-y F_{11}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{21}\! \left(x , y , z\right) &= F_{22}\! \left(x , y , z\right)\\ F_{22}\! \left(x , y , z\right) &= F_{23}\! \left(x , y\right) F_{5}\! \left(x , z\right) F_{9}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ \end{align*}\)