Av(12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 23145, 23154)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 544, 2826, 15200, 83910, 472688, 2706298, 15701616, 92114062, 545487968, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 25 rules.

Found on January 23, 2022.

Finding the specification took 18 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 25 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{18}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{18}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)+F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{18}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{21}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{13}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{14}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{15}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{19}\! \left(x , y\right)+F_{21}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{17}\! \left(x , y\right) &= -\frac{-y F_{8}\! \left(x , y\right)+F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= -\frac{-y F_{15}\! \left(x , y\right)+F_{15}\! \left(x , 1\right)}{-1+y}\\ F_{21}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{20}\! \left(x , y\right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x , 1\right)\\ F_{23}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right) F_{5}\! \left(x \right)\\ \end{align*}\)