Av(12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235, 14325, 23415, 23514, 24315)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 105, 479, 2251, 10859, 53529, 268386, 1363884, 7008162, 36349342, 190052294, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 51 rules.

Found on January 23, 2022.

Finding the specification took 57 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 51 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{18}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{18}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{18}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x , 1\right)\\ F_{8}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{33}\! \left(x , y\right)+F_{6}\! \left(x \right)+F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{8}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{18}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x , y\right)+F_{15}\! \left(x \right)+F_{17}\! \left(x \right)+F_{33}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{13}\! \left(x , y\right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)+F_{17}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{16}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x \right) &= F_{18}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x , 1\right)\\ F_{21}\! \left(x , y\right) &= -\frac{-y F_{22}\! \left(x , y\right)+F_{22}\! \left(x , 1\right)}{-1+y}\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y\right)+F_{26}\! \left(x , y\right)+F_{35}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y\right)+F_{23}\! \left(x , y\right)+F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y\right)+F_{29}\! \left(x , y\right)+F_{31}\! \left(x , y\right)+F_{33}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{27}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= -\frac{-y F_{8}\! \left(x , y\right)+F_{8}\! \left(x , 1\right)}{-1+y}\\ F_{31}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{32}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= -\frac{-y F_{13}\! \left(x , y\right)+F_{13}\! \left(x , 1\right)}{-1+y}\\ F_{33}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{34}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= -\frac{-y F_{21}\! \left(x , y\right)+F_{21}\! \left(x , 1\right)}{-1+y}\\ F_{35}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{36}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y\right)+F_{37}\! \left(x , y\right)+F_{41}\! \left(x , y\right)+F_{43}\! \left(x , y\right)\\ F_{37}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= -\frac{-y F_{39}\! \left(x , y\right)+F_{39}\! \left(x , 1\right)}{-1+y}\\ F_{39}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x , y\right)+F_{33}\! \left(x , y\right)+F_{40}\! \left(x , y\right)+F_{6}\! \left(x \right)\\ F_{40}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{42}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= -\frac{-y F_{27}\! \left(x , y\right)+F_{27}\! \left(x , 1\right)}{-1+y}\\ F_{43}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{44}\! \left(x , y\right)\\ F_{44}\! \left(x , y\right) &= -\frac{-y F_{36}\! \left(x , y\right)+F_{36}\! \left(x , 1\right)}{-1+y}\\ F_{45}\! \left(x \right) &= F_{18}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{47}\! \left(x \right)+F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{18}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{39}\! \left(x , 1\right)\\ F_{49}\! \left(x \right) &= F_{26}\! \left(x , 1\right)\\ F_{50}\! \left(x \right) &= F_{35}\! \left(x , 1\right)\\ \end{align*}\)