Av(1234)
View Raw Data
Counting Sequence
1, 1, 2, 6, 23, 103, 513, 2761, 15767, 94359, 586590, 3763290, 24792705, 167078577, 1148208090, ...
Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300 uniformly at random. The color of the point \((i, j)\) represents how many permutations have value \(j\) at index \(i\) (darker = more).

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 18 rules.

Found on April 22, 2021.

Finding the specification took 6 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 18 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{15}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{5}\! \left(x , y\right)\\ F_{5}\! \left(x , y\right) &= F_{10}\! \left(x , y\right) F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{7}\! \left(x , 1, y\right)\\ F_{7}\! \left(x , y , z\right) &= F_{8}\! \left(x , y z , z\right)\\ F_{8}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y , z\right)+F_{13}\! \left(x , y , z\right)+F_{9}\! \left(x , y , z\right)\\ F_{9}\! \left(x , y , z\right) &= F_{10}\! \left(x , y\right) F_{8}\! \left(x , y , z\right)\\ F_{10}\! \left(x , y\right) &= y x\\ F_{11}\! \left(x , y , z\right) &= F_{10}\! \left(x , z\right) F_{12}\! \left(x , y , z\right)\\ F_{12}\! \left(x , y , z\right) &= \frac{-z F_{7}\! \left(x , 1, z\right)+y F_{7}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{13}\! \left(x , y , z\right) &= F_{14}\! \left(x , y , z\right) F_{15}\! \left(x \right)\\ F_{14}\! \left(x , y , z\right) &= \frac{z F_{8}\! \left(x , y , z\right)-F_{8}\! \left(x , y , 1\right)}{-1+z}\\ F_{15}\! \left(x \right) &= x\\ F_{16}\! \left(x , y\right) &= F_{15}\! \left(x \right) F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= \frac{y F_{4}\! \left(x , y\right)-F_{4}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion" and has 19 rules.

Found on April 23, 2021.

Finding the specification took 16 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , 1, y\right)\\ F_{8}\! \left(x , y , z\right) &= F_{9}\! \left(x , y z , z\right)\\ F_{9}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y , z\right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{9}\! \left(x , y , z\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y , z\right) &= F_{11}\! \left(x , z\right) F_{13}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= -\frac{z F_{8}\! \left(x , 1, z\right)-y F_{8}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y , z\right) F_{16}\! \left(x \right)\\ F_{15}\! \left(x , y , z\right) &= -\frac{-z F_{9}\! \left(x , y , z\right)+F_{9}\! \left(x , y , 1\right)}{-1+z}\\ F_{16}\! \left(x \right) &= x\\ F_{17}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)

This specification was found using the strategy pack "Point And Col Placements Tracked Fusion" and has 19 rules.

Found on April 23, 2021.

Finding the specification took 23 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , 1, y\right)\\ F_{8}\! \left(x , y , z\right) &= F_{9}\! \left(x , y z , z\right)\\ F_{9}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y , z\right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{9}\! \left(x , y , z\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y , z\right) &= F_{11}\! \left(x , z\right) F_{13}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= -\frac{z F_{8}\! \left(x , 1, z\right)-y F_{8}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y , z\right) F_{16}\! \left(x \right)\\ F_{15}\! \left(x , y , z\right) &= -\frac{-z F_{9}\! \left(x , y , z\right)+F_{9}\! \left(x , y , 1\right)}{-1+z}\\ F_{16}\! \left(x \right) &= x\\ F_{17}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)

This specification was found using the strategy pack "Insertion Col Placements Tracked Fusion" and has 63 rules.

Found on April 23, 2021.

Finding the specification took 35 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 63 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\ F_{9}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{12}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{-1+y}\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x , 1\right)\\ F_{16}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x , y\right)+F_{29}\! \left(x , y\right)\\ F_{17}\! \left(x \right) &= 0\\ F_{18}\! \left(x , y\right) &= -\frac{y \left(F_{19}\! \left(x , 1\right)-F_{19}\! \left(x , y\right)\right)}{-1+y}\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , 1, y\right)\\ F_{24}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x , y , z\right)+F_{26}\! \left(x , y , z\right)\\ F_{25}\! \left(x , y , z\right) &= F_{11}\! \left(x , z\right) F_{24}\! \left(x , y , z\right)\\ F_{26}\! \left(x , y , z\right) &= F_{11}\! \left(x , z\right) F_{27}\! \left(x , y , z\right)\\ F_{27}\! \left(x , y , z\right) &= F_{28}\! \left(x , y z , z\right)\\ F_{28}\! \left(x , y , z\right) &= -\frac{z F_{24}\! \left(x , 1, z\right)-y F_{24}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{29}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{31}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\ F_{31}\! \left(x , y\right) &= F_{2}\! \left(x \right)+F_{32}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{33}\! \left(x , y\right)+F_{60}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= F_{34}\! \left(x , y\right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)+F_{46}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , 1, y\right)\\ F_{36}\! \left(x , y , z\right) &= F_{37}\! \left(x , z\right)+F_{40}\! \left(x , y , z\right)\\ F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{39}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x , y\right)\\ F_{40}\! \left(x , y , z\right) &= F_{17}\! \left(x \right)+F_{41}\! \left(x , y , z\right)+F_{44}\! \left(x , z , y\right)\\ F_{41}\! \left(x , y , z\right) &= \frac{z \left(F_{42}\! \left(x , y , 1\right)-F_{42}\! \left(x , y , \frac{z}{y}\right)\right)}{-z +y}\\ F_{42}\! \left(x , y , z\right) &= F_{43}\! \left(x , y , y z \right)\\ F_{43}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{36}\! \left(x , y , z\right)\\ F_{44}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{45}\! \left(x , z , y\right)\\ F_{45}\! \left(x , y , z\right) &= F_{21}\! \left(x , y\right)+F_{40}\! \left(x , y , z\right)\\ F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , 1, y\right)\\ F_{47}\! \left(x , y , z\right) &= F_{32}\! \left(x , z\right)+F_{48}\! \left(x , y , z\right)\\ F_{48}\! \left(x , y , z\right) &= F_{17}\! \left(x \right)+F_{49}\! \left(x , y , z\right)+F_{55}\! \left(x , y , z\right)+F_{58}\! \left(x , z , y\right)\\ F_{49}\! \left(x , y , z\right) &= -\frac{y \left(F_{50}\! \left(x , 1, z\right)-F_{50}\! \left(x , y , z\right)\right)}{-1+y}\\ F_{51}\! \left(x , y , z\right) &= F_{50}\! \left(x , y z , z\right)\\ F_{51}\! \left(x , y , z\right) &= F_{4}\! \left(x \right) F_{52}\! \left(x , y , z\right)\\ F_{52}\! \left(x , y , z\right) &= F_{53}\! \left(x , y , z\right)+F_{54}\! \left(x , y , z\right)\\ F_{53}\! \left(x , y , z\right) &= F_{40}\! \left(x , y z , z\right)\\ F_{54}\! \left(x , y , z\right) &= F_{48}\! \left(x , y z , z\right)\\ F_{55}\! \left(x , y , z\right) &= \frac{z \left(F_{56}\! \left(x , y , 1\right)-F_{56}\! \left(x , y , \frac{z}{y}\right)\right)}{-z +y}\\ F_{56}\! \left(x , y , z\right) &= F_{57}\! \left(x , y , y z \right)\\ F_{57}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{47}\! \left(x , y , z\right)\\ F_{58}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{59}\! \left(x , z , y\right)\\ F_{59}\! \left(x , y , z\right) &= F_{16}\! \left(x , y\right)+F_{48}\! \left(x , y , z\right)\\ F_{60}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{31}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{62}\! \left(x , 1, y\right)\\ F_{62}\! \left(x , y , z\right) &= F_{59}\! \left(x , y z , z\right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row And Col Placements Tracked Fusion" and has 19 rules.

Found on April 22, 2021.

Finding the specification took 89 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 19 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x , 1\right)\\ F_{5}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{6}\! \left(x , y\right)\\ F_{6}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{7}\! \left(x , y\right)\\ F_{7}\! \left(x , y\right) &= F_{8}\! \left(x , 1, y\right)\\ F_{8}\! \left(x , y , z\right) &= F_{9}\! \left(x , y z , z\right)\\ F_{9}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y , z\right)+F_{12}\! \left(x , y , z\right)+F_{14}\! \left(x , y , z\right)\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y\right) F_{9}\! \left(x , y , z\right)\\ F_{11}\! \left(x , y\right) &= y x\\ F_{12}\! \left(x , y , z\right) &= F_{11}\! \left(x , z\right) F_{13}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= -\frac{z F_{8}\! \left(x , 1, z\right)-y F_{8}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ F_{14}\! \left(x , y , z\right) &= F_{15}\! \left(x , y , z\right) F_{16}\! \left(x \right)\\ F_{15}\! \left(x , y , z\right) &= -\frac{-z F_{9}\! \left(x , y , z\right)+F_{9}\! \left(x , y , 1\right)}{-1+z}\\ F_{16}\! \left(x \right) &= x\\ F_{17}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= -\frac{-y F_{5}\! \left(x , y\right)+F_{5}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)